Page cover image

Prompt Engineering 基础

当前 AI 语言模型需要通过合适的提示词才能激发出完全的潜能,因此,我们需要掌握如何写出合适 Prompt 的技能。​

生成式 AI 非常有用,但它需要人类指导。通常情况下,生成式 AI 能就像公司新来的实习生一样,非常有能力,但需要清晰的指示才能做得好。能够正确地指导生成式 AI 是一项非常强大的技能。你可以通过发送一个 prompt 来指导生成式 AI,这通常是一个文本指令。Prompt 是向助手提供的输入,它会影响输出结果。一个好的 Prompt 应该是结构化的,清晰的,简洁的,并且具有指向性。​

如何写好一个结构化 prompt

结构化 prompt 是指 prompt 的构造应该有明确的逻辑和结构。例如,如果你想让模型生成一篇文章,你的 prompt 可能需要包括文章的主题,文章的大纲,文章的风格等信息。

​让我们看一个基本的讨论问题的例子:

"我们星球面临的最紧迫的环境问题是什么,个人可以采取哪些措施来帮助解决这些问题?"

我们可以将其转化为简单的助手提示,将回答以下问题:放在前面。

回答以下问题:
我们星球面临的最紧迫的环境问题是什么,个人可以采取哪些措施来帮助解决这些问题?

由于这个提示生成的结果并不一致,有些只有一两个句子。一个典型的讨论回答应该有多个段落,因此这些结果并不理想。一个好的提示应该给出具体的格式和内容指令。您需要消除语言中的歧义以提高一致性和质量。这是一个更好的提示。

写一篇高度详细的论文,包括引言、正文和结论段,回答以下问题:
我们星球面临的最紧迫的环境问题是什么,
个人可以采取哪些措施来帮助解决这些问题?

第二个提示生成了更长的输出和更好的结构。提示中使用 “论文” 一词是有意的,因为助手可以理解论文的定义,因此更有可能生成连贯的、结构化的回答。

如何提升其质量和效果

提升 prompt 质量和效果的方法主要有以下几点:

  • 尽量明确你的需求。模型的输出会尽可能满足你的需求,所以如果你的需求不明确,输出可能会不如预期。

  • 使用正确的语法和拼写。模型会尽可能模仿你的语言风格,所以如果你的语言风格有问题,输出可能也会有问题。

  • 提供足够的上下文信息。模型会根据你提供的上下文信息生成输出,所以如果你提供的上下文信息不足,可能无法生成你想要的结果。

在为讨论问题制定有效的提示后,您现在需要细化生成的结果。这可能涉及到调整输出以符合诸如字数等限制,或将不同生成的结果的概念组合在一起。

迭代的一个简单方法是生成多个输出并查看它们,以了解正在使用的概念和结构。一旦评估了输出,您就可以选择最合适的输出并将它们组合成一个连贯的回答。另一种迭代的方法是逐步开始,然后逐步扩展。这需要不止一个提示:一个起始提示,用于撰写最初的一两段,然后是其他提示,以扩展已经写过的内容。以下是一个潜在的哲学讨论问题:

"数学是发明还是发现?用仔细的推理来解释你的答案。"

将其添加到一个简单的提示中,如下所示:

写一个起始段回答以下问题:
数学是发明还是发现?用仔细的推理来解释你的答案。

我生成了一些回答,找到了一个我喜欢的:

哲学家和数学家之间争论不休,数学是发明还是发现。
一些人认为,数学的概念和原则独立于人类思维存在,因此可以被认为是被发现而不是被发明的。
例如,数字、比率和几何形状的概念在自然界中被观察到,可以被抽象化和系统化地研究。

是一个不错的开端。然后我使用另一个提示来扩展:

我正在撰写一篇详细的短文,回答以下提示:
数学是发明还是发现?用仔细的推理来解释你的答案。这是我目前的情况: 哲学家和数学家之间争论不休,数学是发明还是发现。
一些人认为,数学的概念和原则独立于人类思维存在,因此可以被认为是被发现而不是被发明的。
例如,数字、比率和几何形状的概念在自然界中被观察到,可以被抽象化和系统化地研究。写下我文章的下一段。

我使用此提示生成了几个扩展,并选择了一个我喜欢的,最终得到了以下结果:

哲学家和数学家之间争论不休,数学是发明还是发现。
一些人认为,数学的概念和原则独立于人类思维存在,因此可以被认为是被发现而不是被发明的。
例如,数字、比率和几何形状的概念在自然界中被观察到,可以被抽象化和系统化地研究。
另一方面,有人认为数学在很大程度上是人类思维的发明。
数学原理基于逻辑推理,这是人类思维的一个特征。
例如,欧几里德几何基于抽象的公理和前提,被接受为真实而无需证明。
因此,可以认为几何是人类思维的发明,而不是一种发现。
同样,数学公式和方程用于模拟和预测物理现象,这又是人类推理的结果。

使用扩展提示,我们可以逐步地写作并在每个步骤上进行迭代。这对于需要生成更高质量的输出并希望逐步修改的情况非常有用。

Last updated